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ABSTRACT

When instrumentalists perform with vibrato, they add a quasi-periodic frequency modulation to the note. Although
this modulation is rarely purely sinusoidal, many methods for vibrato parameterization focus exclusively on the
rate and depth of the frequency modulation, with less attention given to measuring how a performer’s vibrato
changes over the course of a note. In this paper, we interpret the vibrato trajectories as instantiations of a random
process which can be characterized by an associated autocorrelation function and power spectral density. From
these distributions, a coherence time can be estimated that describes the stability of the vibrato within a note. This
metric can be used to characterize individual performers as well as for resynthesizing vibratos of different styles.

1 Introduction vibrato waveform evolves and the note is shaped, or

between different notes on the instrument or phrase.

Vibrato is a commonly used musical technique where
the performer introduces a frequency modulation to
the note for expressive effect. While a frequency
modulation is always present, and dominates bowed
string vibrato, large modulations of amplitude and

spectra are also observed in many cases [I, 2, 3].

Furthermore, a trained performer will adjust both
the rate and width of their vibrato depending on the
musical context. As such, most analysis of vibrato
focuses on these parameters when characterizing
different instruments or players [4, 2].

In this context, the vibrato is often assumed to be
sinusoidal, or nearly so. However, natural vibratos
are never perfectly periodic and generally contain

some random variations in rate, width, and shape.

These variations can appear both during a note, as the

An example of these differences is given in Figure 1.
Here, three different vibrato waveforms are shown, all
of which have similar rate and width, but differ in their
evolution. In particular, the waveform of the middle
example is seen to change about half way through the
note, becoming smaller and more rounded.

In order to characterize these changes, we develop a
method for describing and comparing the vibratos of
different players that is independent of the rate and
width of the modulation. This parameter, which we
call stability, corresponds to the length of time over
which a given vibrato sample remains consistent. In
particular, this paper extends and supplements exist-
ing methods of vibrato analysis to include an explicit
treatment of vibrato as a stochastic as opposed to deter-
ministic process. In addition to presenting and defining
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Fig. 1: Pitch tracks from three samples of vibrato are
shown. All three vibratos change over the
course of the note, but in slightly different ways.

a parameterization scheme and quantitative metric for
vibrato stability, it demonstrates how this metric can
be used to compare vibrato from different performers
across a varied database of musical tones.

2 Audio Feature Extraction

The first stage of vibrato analysis is to extract the vi-
brato parameter tracks from the recorded audio. Before
analysis, the steady state portion of the tone is isolated
by removing the first and last 15 percent of the note.
Depending on the context, a number of different pa-
rameter tracks may be used to characterize the vibrato.
For instance, a pitch track can be estimated using the
Yin algorithm [5]. In addition, the spectral centroid and
overall amplitude tracks can be useful for characteriz-
ing many instruments, particularly woodwinds [6, 3].
Although the majority of this paper focuses on the anal-
ysis of pitch trajectories, a similar analysis could be
performed on other trajectories.

2.1 Isolation of Vibrato

The raw parameter tracks often include variations from
sources other than vibrato. In particular, the pitch tracks
often contain minor intonation adjustments and the am-
plitude tracks can be dominated by an overall loudness
envelope. In order to analyze the vibrato independently
of other parameter variations, it is necessary to separate
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Fig. 2: The original pitch estimate (black, solid) and
polynomial trend line (grey, dotted) for a vi-
brato sample are shown at top. The vibrato
track (shown at bottom) is the difference be-
tween the raw track and the trend.

the faster vibrato variations from the underlying trends.
Mathematically, this amounts to a decomposition of
the raw parameter track p,[f] into a vibrato component
py[t] and a trend component p;[t] as given in Equation
1.

prlt] = pylt] + pit] (1)

In the following analysis, the trend p;[t] is estimated
by fitting a 5th order polynomial to the raw parameter
track, however the polynomial order could be adjusted
depending on the consistency of the performer and
the amount of non-vibrato deviations that are present.
While this trend could also be estimated by low pass
filtering the raw parameter track, the filters needed
to isolate a sufficiently narrow passband of only a
few Hz generally have correspondingly long filter
lengths in the time domain, and therefore require a
method to explicitly handle the ends of the parameter
tracks. In addition to avoiding explicit endpoint
corrections, a polynomial fit also provides a compact
parametric representation of the trend which can be
easily manipulated or removed during resynthesis.

An example of this process is shown in Figure 2. Al-
though a prominent vibrato can be seen in the upper
(raw) pitch track, there is also a slowly varying trend
indicated with a dotted line. In the lower figure, the un-
derlying trend has been removed to generate the vibrato
waveform.
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Fig. 3: Two vibrato tracks are shown (top) along with their corresponding autocorrelations (middle) and power
spectral densities (bottom). The example at left consists of a very stable vibrato with a wide autocorrelation
and narrow PSD. In contrast the right hand example shows a less stable vibrato characterized by a narrower

autocorrelation and wide PSD.

3 Statistical Analysis of Vibrato

Once the vibrato tracks have been extracted and
isolated from the audio recording, the statistical
properties of the process can be estimated. Like many
natural processes, a musician’s vibrato contains some
amount of unpredictability, and therefore cannot be
described as a purely deterministic process.

Although many methods of analyzing vibrato identify
global parameters like width and rate, less work has
been done to characterize the random component of
the modulation. By interpreting the vibrato parameter
track as a single instantiation of a random process, it
is possible to identify factors that are consistent be-
tween notes of the same player or differ significantly
between individual performers or instruments. In this
framework, the vibrato parameters are not estimated
directly from the parameter tracks, but calculated from
the corresponding autocorrelation and power spectral
density functions.

3.1 Vibrato Autocorrelation
To characterize the time evolution of the vibrato, the

autocorrelation function is used. The autocorrelation
function r,,[7] compares the original signal with itself

at different a series of offsets, 7 as given in Equation
2. Therefore, a perfectly sinusoidal vibrato of infinite
duration will have a sinusoidal autocorrelation with
infinite width and a rate of oscillation equal to the
vibrato rate.

rplt] =Y pltlpylt +7] )

In practice, however, the width of the autocorrelation
is limited both by the finite duration of the tone and
steadiness of the player. In order to compare notes of
different lengths, we use the unbiased sample autocorre-
lation, r,;[7], as given in Equation 3, where T,,,,, is the
length of the vibrato trajectory. The unbiased sample
autocorrelation provides an estimate of the autocorre-
lation function of the underlying process, which can
then be used to characterize the vibrato and compare
multiple notes within a set.

1 1 t=Tnax

oo ? 0 = T & PPl
3)

This form removes the implicit Bartlett window that
occurs when the raw autocorrelation is calculated for

rub[ﬂ =
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a signal of finite duration [7]. However, this unbiasing
does not fully compensate for the differing lengths,
since it effectively replaces the implied Bartlett window
with a rectangular window of the same length. As such,
the autocorrelations must all be truncated to the same
length when comparing tones of differing lengths in the
frequency domain. While this cannot fully eliminate
the effects of the window, it ensures that all samples in
the database are treated uniformly and that the resulting
statistical comparisons will not be compromised by
differing signal lengths.

3.2 Vibrato Power Spectral Density

The power spectral density (PSD) is defined as the
discrete time Fourier transform of the unbiased auto-
correlation function, and can be calculated from the
unbiased sample autocorrelation as defined in Equation
4.

S(w) = Zrub[r]efjm 4)

Figure 3 shows an example of these calculations for
two different vibrato samples. In the first (at left) exam-
ple, the vibrato remains consistent throughout a long
note, and therefore has a wide autocorrelation that does
not decay much over the range of lags shown. In con-
trast, the second example (at right) is less stable, and
the autocorrelation envelope decays noticeably. These
differences can also be seen in the frequency domain,
where the wider autocorrelation of the first example
produces a correspondingly narrower power spectral
density.

4 Vibrato Parameters

A range of vibrato parameters can be calculated from
the functions defined in the previous section. These in-
clude statistical definitions of the vibrato width and rate
as well as metrics for the stability of vibrato within a
single note and consistency of a player across a number
of tones.

4.1 Vibrato Width

The vibrato width is calculated directly from the stan-
dard deviation of the vibrato parameter track. For a
pitch track, the standard deviation of the vibrato in
Hz (oy;) is converted to musical cents (1 semitone
= 100 cents) using the relation given in Equation 5.
This allows vibrato on different notes to be compared

and corresponds with both musical convention and the
perception of pitch on a logarithmic scale.

fo+0on;

Width = 1200*10g2(f .
0 — OHz

) &)

A similar normalization is often desirable when analyz-
ing other parameters. For example, when an amplitude
trajectory is used, the raw amplitude values can be di-
vided by the average amplitude to compare notes of
different dynamics. The results can be presented either
as fractional change, or converted to decibels as desired.
Similarly for the spectral centroid, the raw centroid val-
ues in Hz may be divided by the fundamental pitch,
producing a normalized value that is independent of
the fundamental frequency.

4.2 Vibrato Rate

For a pitch track, the vibrato rate is taken as the loca-
tion of the peak of the power spectral density function.
However, for other parameter tracks, the peak finding
algorithm may need to be restricted to a smaller range,
since these trajectories often contain large variations at
integer multiples of the vibrato rate, due to the acoustic
resonances of the instrument [2].

4.3 Vibrato Stability

The features defined above, and considered elsewhere,
are global parameters of the vibrato for a given note.
When the vibrato changes over the duration of the
note, they often represent the average parameters of
the modulation. In contrast, we define stability as a
measure of how consistent the vibrato is from one
period to the next over the course of a note.

Mathematically, the stability is defined as the reciprocal
of the vibrato bandwidth as defined by the full width
at half max of the power spectral density, and given in
Equation 6. Here, the factor of 27 in the numerator
converts the bandwidth from radians per second to Hz
when taking the inverse.

2r

Stability = ————
PAbLY = EWHM{S(0)}

(6)

Conceptually, the stability estimates the length of time
over which the vibrato process remains constant, and
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closely parallels the concept of coherence time used in
optics and other fields [8]. A larger stability value indi-
cates a steadier, more regular vibrato, while a smaller
value could correspond to intentional changes in the vi-
brato over the course of the note (such as changing the
width or rate), or other inconsistencies in the vibrato
waveform.

5 Ensemble Analysis of Vibrato
Databases

In order to asses the utility of this metric, stability
statistics were calculated for a database of vibrato
tones played on many different instruments. The
database used consisted of samples from the McGill
University Master Samples, as well as the University
of Towa electronic music samples and real world
computing database [9, 10, 11]. Although this analysis
was run on the full database of string, woodwind, and
brass instruments, this discussion highlights trends
within the flute family instruments.

All three databases included multiple sets of flute tones
with vibrato. The Towa samples include treble, alto and
bass flutes, each recorded by the same performer at
different dynamic levels. The McGill samples include
tones from one instrument of each type (piccolo, flute,
alto flute, bass flute), although the performer is not
specified. Finally, the real world computing database
includes vibrato tones on two different treble flutes.

The stability values for this set of flute data is shown
in Figure 4, with error bars denoting the standard
deviation for each set of tones. From this data, some
interesting patterns begin to emerge. For example, the
Towa database (blue, open circles) includes separate
data at different dynamic levels. As such the flute
family data includes flute, alto flute, and bass flute
each recorded at ff and mf dynamics. These pairs of
data sets have very similar vibrato statistics, which
is unsurprising since the dynamic level is unlikely to
heavily influence the performer’s vibrato. Additionally,
the database metadata tells us that all three of these
instruments were recorded by the same performer, sug-
gesting that this metric may be useful for characterizing
the performance independent of the specific instrument.

This data, however, is only a small part of the analysis
that can be done on these databases and is intended to
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Fig. 4: Stability data is shown for a flute family vibrato
across three databases. Data sets that are known
to be performed by the same player on differ-
ent instruments (blue open circles) have similar
stability values.

motivate the relevance and applicability of the stability
metric. When combined with other existing metrics
for width and rate, the stability can provide a useful
additional insight into performance patterns in vibrato.

6 Conclusions and Future Work

This paper presents a statistical framework for analyz-
ing musical vibrato and introduces a metric to charac-
terize the stability of vibrato over the course of a note.
Some initial data is presented for a subset of tones in a
large database which shows promise for future use of
this metric. In addition to extending the current anal-
ysis to the full database of tones, future work seeks to
independently characterize the instantaneous frequency
and amplitude trajectories of individual overtones of a
note. Finally, these statistics may be used to develop a
parametric model of randomness in vibrato that could
be used for resynthesis applications.
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